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1 Abstract

Intro: The cost of making a movement has been proposed as a main driving force in determining movement
characteristics such as speed and accuracy. Estimates for the cost of movement, like joint torque and neural drive,
have been used in many arm reaching studies. It is unclear however how many of these estimates correlate to the
actual cost of arm reaching movements. We examine how five different estimates, joint torque, muscle force, muscle
active state, neural drive, and an estimate for metabolic cost, relate to the metabolic cost of arm reaching.

Methods: We developed a biomechanically accurate model of the arm that we use to estimate multiple biome-
chanical variables and then relate them to metabolic cost of arm reaching from collected subject data. Metabolic
rate of arm reaching was collected from eight subjects that made 10 cm reaches. Subjects made reaches to four
different targets oriented at 45, 135, 225, and 315 degrees from the right horizontal. 0, 5, 10, and 20 lbs of mass
were added to the hand. Reaches were made in one of 6 time windows ranging from 0.45 seconds to 1.35 seconds.
The biomechanical model of the arm consists of two joints (shoulder and elbow), two arm segments (upperarm and
forearm), and eight muscles. It makes planar reaching movements from a minimum jerk trajectory using movement
times from the metabolic data. Using inverse dynamics the model calculates joint torques from the trajectory to
four simulated targets with four different added masses at the hand. The model then tests multiple minimization
functions to distribute muscle force across the eight muscles. Once muscle force has been determined it calculates
muscle active state and determines neural drive to the muscle. Last a model for energetic expenditure is used for
an estimate of metabolic cost of the specific reach. We then integrated the time-series data for joint torque, muscle
force, muscle active state, neural drive, and estimated metabolic cost for each mass and speed condition and fit these
sums to collected metabolic data using either a linear or quadratic function. R2 values are computed from the fits
and used as a metric of accuracy.

Results: Using a minimization function of stress and a linear fit the best fir to measured metabolic cost was the
energy expenditure model with an R2 value of 0.71 with a function 3.25x-25.11. A common function for estimating
cost of arm reaching, joint torque rate squared, only had an r-squared value of 0.49. By testing multiple minimization
functions we find that the specific model function has an effect of the model fits. When using these types of
simulations for modeling decision making we must be careful only using an estimate of metabolic cost as we also
show that metabolic cost is not the only thing driving movement decisions. Certain biomechanical variables from
these simulations may be able to accurately represent the metabolic cost of the movement.
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3 Arm Properties

The properties of forearm centroid length and Icops change depending on the amount of mass added to the hand.
The arm lengths and masses are relatively similar to a few papers [4, 5].

Object Mass (kg) | Length (m) | Centr, (m) Teom
Forearm 1.1586 0.429 0.286 0.01882
Upperarm 1.9328 0.33 0.165 0.0141

Table 1: Properties of the forearm and upperarm rigid segments. The values for Forearm Cent; and Icops are for
0 added mass at the hand.

These muscle parameters are estimated from muscle lengths and cross sectional areas and the density of the
muscle.

Muscle Mass (kg) PCSA (m?) Lopr % FT
Anconeus (AN) 0.0291 4E-4 0.0687 (C)  40.0
Brachialis (BS)  0.0829 8TIE-4 0090 (L)  40.0
Brachioradialis (BR) 0.0525 2.95E-4 0.1837 (L)  60.2
Deltoid Anterior (DA) 0.1005 5.46E-4 0.1296 (L) 42.9
Deltoid Posterior (DP) 0.1323 5.69E-4 0.1818 (L)  42.9
Pectoralis (PC) 0.0816 6.68E-4 0.1701 (L)  57.0
Biceps Brachii(BB) 0.1278 4.32E-4 0.225 (M)  53.6
Triceps Brachii (TB) 0.3920 11.94E-4  0.3235 (M)  52.9

Table 2: Muscle Properties. For Lopr, the letter corresponds to which author the value was taken from. CJ[1], L[2],

M][3].

3.1 PCSA, Optimal Length, and %FT

The muscle masses can be computed using mass = Lopr - PCSA - p where p is 10.6 kg/m?3. The PCSA for each
muscle is estimated from cadaver studies [2, 6]. The cross sectional area for the brachioradialis is taken from [7].
The cross sectional areas are all increased by 1 as it was needed for the muscles to be strong enough for the faster
movements. The PC'SA for each muscle can be estimated similar to the Todorov model [8], or from cadaver studies
done by Holzbaur and Murray by dividing the muscle volume by the optimal fiber length [9, 3].

Currently the model uses the optimal muscle lengths from Murray [3] and combining the heads of muscles. Some
of these values are taken from Langenderfer [2] as Murray does not test them. However, Chang et al.[1] shows that
the optimal lengths of the muscles are quite a bit shorter than reported by Lagenderfer and Murray. I think the
optimal muscle lengths for the brachialis should agree more with the shorter values in Chang[1] as these values match
up closer to Pigeon[10] and Van Zuylen[11].

If not listed it assumes the optimal fiber lengths occur at 45° shoulder flexion and 90° elbow flexion, and that
the length of the muscle at that position is given in equation 12. This method may not be accurate for some muscles
as they would vary greatly if the equation is used when compared to the langenderfer model. Kistemaker shows 5
references that show that the optimal elbow flexor angle to maximize the elbow moment is also 45° [12].

Percent fast twitch of each of the muscles can be estimated from [13, 14]. For data that has deep and superficial
values an average is taken for percent fast twitch.

3.2 Model Variations

There are two working models. One model uses 6 muscles that are similar to Li and Todorov [8]. The length
properties could be scaled to the optimal fiber length parameter in previous literature as the current lengths do not



account for tendon lengths [9, 2]. I'm not sure how much changing the total length of the muscle will affect the active
state properties of the muscles in 14 [15]. If this method does not work then the model would need to determine the
length of each muscle plus the tendon to get an accurate measure of the length of the muscle.

The second model uses 8 arm muscles that are defined from cadaver studies [10]. The second model is the one
currently being used as it gives functions for moment arms and muscle lengths as a function of shoulder and elbow
angle. Murrary, Pigeon, Delp, and Kistemaker all provide models for muscle lengths, but I'm leaning towards using
Pigeon’s model because it provides easily accesible equations [16, 10, 17, 18].

A diagram of the six muscle model and their locations is shown in Figure 1 [8, 17].

\ “Anconeus (AN)
W/ Triceps (TB)
Brachioradialis (BR)

Brachialis (BS)
Biceps;(BB)

gPéctoralis (PC)
_Deltoid Anterior (DA)

Deltoid Posterior (DP)

Figure 1: Diagram of the 8 simulated muscles and which muscles they represent.

3.3 Forearm Moment of Inertia

To find the new moment of inertia about the center of mass of the forearm plus added mass we need to use the
parallel axis theorem.

Centr oiq - m2 + l2 - (mass added)
mo + mass added (1)
Leom,new = 0.01882 + mo(Centr, o1qg — C’enthew)z + added mass(lo — C’emﬁL,new)2

Centr new =

4 Targets and reaching direction

The simulation was set to reach towards four different targets located at 45°, 135°, 225°, and 315° from the right
horizontal (Figure 2). The targets were also spaced at 5 cm, 10 cm, 15 ¢cm, and 20 cm. Figure 2 shows the setup for
the targets. The starting position of the hand was set to be x = -7.58 cm and y = 48.78 cm. The targets were then
placed at the distances and directions specified before.



Figure 2: Target Orientation from start position (home).

5 Minimum Jerk

Minimum Jerk trajectory is an approximation of the position, velocity, and acceleration of the hand position
when making an arm reaching movement. This was used to simulate reaches to 4 different targets positioned at
45°, 135°, 225°, 315° from the right horizontal. Humans have been shown to reach approximately in a manner that
minimizes the jerk of the motion in a straight line [19].

Minimum jerk minimizes the function:

Solving this funciton provides z, &, and .

xr=ag+ ait + a2t2 + a3t3 + a4t4 + a5t5
& = ay + 2ast + 3ast® + daqgt® + Sastt (3)
i = 2as + 6ast + 12a4t> + 20as5t>
Knowing initial and final conditions we are able to solve for the constants al...a6. Using 2(0) =0, £(0) =0, & =0,
we can solve ag, aq, as = 0.

Or in a more simple form, if we are moving from x; to ¢ in ¢t = d, the minimum jerk equation is showing in Eq.
4. This can be solved in both x and y directions to compute the x and y position data.

a(t) =2 + (xp — x;) (10 <2>3 - (2)4 0 <;)5>
B(t) = (zy — 1) (30 (2)2 — 60 <;)3 +30 (2>4> 4)
0= -2 (s(3) -0 () 1 (£) )

The speed with which the model was simulated depended on the mass added (Table 3). During subject testing
the heaviest mass condition was not able to be moved at the highest speed without fatigue so we tested slower speeds
for the two heavier masses. The speeds are shown in table Using these equations and the times specified in our
testing protocol we get velocity traces that look similar to Figure 3.



Mass || Time 1 | Time 2 | Time 3 | Time 4 | Time 5 | Time 6
0 Ibs 0.4407 0.492 0.5908 | 0.7733 | 0.9650 | 1.1567
5 Ibs 0.4703 | 0.5089 | 0.5856 | 0.7807 | 0.9694 | 1.1657
10 Ibs || 0.5114 | 0.6006 | 0.7847 | 0.9701 | 1.1591 | 1.3438
20 1bs || 0.5301 | 0.6049 | 0.7849 | 0.9756 | 1.1634 | 1.3371

Table 3: Movment times averaged across targets for given masses.
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Figure 3: End point velocity using minimum jerk and speeds provided in Table 3.

6 Inverse Kinematics

The first step is to convert the data (in x and y position data) to joint positions . and 6. These angles are defined
by their Euler Angles and not flexion extension angles. From there we differentiate to get the angular velocities 6,
and 9g In these equations l; and 6, refer to the upper arm segment and shoulder joint. I and 6, refer to the forearm
and elbow joint. For a more indepth derivation see [20].

2
0. = atan2 | + 1_<x2+y2—l%—l§) <x2+y2—l%—l§>
¢ 21115 ’ 2115 (5)

0s = atan2(y, x) — atan2(lasin(0.), 11 + lacos(6.))

7 Inverse Dynamics

Next we differentiate the angular positions to get angular velocities and angular accelerations. From there the
angular derivitives the joint torques can be derived. For an indepth derivation see [21].

Te QSCOS(ee - 99) a2 ée agéesin(Ge — 95) ao 0.

H _ { a1 +as  azcos(Be —98)] [e] . [ 0 —agéesm(ee—es)} H (6)



a1 = ms|sl‘l7cent|2 + IS,ZZ
g = me|e$l,cent‘2 + Ie,ZZ
as = m211|e$2e|

ay = mgl%

7.1 Alaa’s Method

In the following equations we define the variables as follows: m; = upperarm mass, r; = upperarm centroid
length, [ = upperarm length, Icoas,1 = moment of intertia about its center of mass. mg = forearm mass, ro = the
length to the center of mass of the forearm, r92 = the length to the centroid (arm + mass), Iy = forearm length,
Icom,1 = moment of intertia about its centroid with the added mass.

This method is the same as before just a little more fleshed out, code wise it may be a little simpler or easier to
read but both methods are valid.

mir? + Icoma + (mass +ma) (I3 4+ 135 + 2l1r29c08(0.)) + Icom2 (M2 + mass)(r3y + l1r35c05(0.)) + Icom .o
(ma + mass)(r3y + l1r35c05(0.)) + Icom 2 mars +mass - 13 + Icowm,2

I:

—m2T22llégSin(0)e — 2m2r22Z1é39€sin(96)
O: 12 -
maragli05sin(6.)

7]=r i)

Figure 4 shows the results of an inverse dynamics simulation towards target

7.2 Effective Mass Calculation

The effective mass is used to estimate the arms resistance to a force in a given direction[4]. To determine the
effective mass of the arm at a given time point we need to define a Jacobian matrix A.

dr  [=lisin(0s) — lasin(0s + 0.) —lasin(fs + 6.)

A= do | licos(8,) + lzcos(0s + 6.) lacos(0s + 6.) (9)

The inertia matrix is the same as defined above in section 7.1, Eq. 8, variable M. Then defining the mass matrix

as:
M= (AN 1A (10)
Last we induce a force of 1 in the reach direction to compute the effective mass of the reaching movement. In
Eq. 11, 0 is the angle of reaching direction, and +1 is added at the end to account for the inertia of the robotics arm

manipulandum.
Ef fective mass = norm(M x [cos(0)  sin(0)] + 1 (11)

The effective mass as a function of target, mass added, and distance is shown in Figure 5. In this equation @ is
the movement direction from the right horizontal. It would be equivalent to Figure 2.
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Figure 4: Inverse dynamics and plotted shoulder/elbow position, torque, and acceleration. All plots are for the

masses fastest speed, and towards target A, for a distance of 10 cm.
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Figure 5: Effective mass calculation seperated by target and condition for the 3rd speed for each respective mass. In
each subplot yellow is 20 Ibs added, green is 10 lbs, blue is 5 Ibs, purple is 0 Ibs added. The initial and final values
are shown in the text.
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8 Muslce Momement Arms and Lengths

8.1 Muscle Moment arms - 8 Muscle Model

The moment arms were set to vary with shoulder an elbow position as defined below [10]. Another approximation
could be used from cadaver studies by Murray [16] but it may not have all the muscles needed. A negative momemnt
arm is used to provide a negative torque around the joint as muscle force can never be less than 0.

The Pigeon model fits polynomials to the moment arm and muscle lengths as a function of shoulder and elbow
angle. A graph showing how the moment arms are chaning is shown in figure 6a.

MA=z,q} + 20 1q] '+ 4+ 215 + o

3
) . (12)
ML = cst + Z(Yan + Yn-1G; e ygg)

j=1

The coefficients for this equation is shown in the tables below. Most of the coefficients are scaled to a power of 10.

Moment Arm Coefficients

DF Elbow flexion/extension Shoulder F/E
Muscle ¢5 x 109 ¢4 x 107 ¢3 x 10° 5 x 103 ¢; x 10! o do

AN -2.7306 10.448 -14.329 8.4297 -2.2841  -5.3450

BS -2.0530 2.3425 2.3080 5.5492

BR -6.5171 10.084 1.6681 19.490

DA 33.02

DP -78.74
PC 50.80

BB -2.9883 1.8047 4.5322 14.660 29.21

TB -3.5171 13.277 -19.092 12.886 -3.0284 -23.287 -25.40

Table 4: Coefficients for polynomial fits to moment arm lengths.

8.2 Muscle Lengths - 8 Muscle Model

The optimal lengths of the muscles as shown in table 2 were estimated with the arm in a neutral position where
05 = 45° and 6, = 90°. The following equations describe how I calculate the lengths of the muscles. They are solved
for in a similar way to moment arms [10]. A graphical representation of the muscle lengths is shown in figure 6b.

Kistemaker used cadaver studies to estimate the muscle lengths, though i’'m not sure how they actually measured
the muscle lengths as there were not equations or parameters set for the model [12, 16, 18].

13



10

Moment arm (cm)

Moment arm (cm)

Muscle Length Coefficients

DF

Elbow flexion/extension

Shoulder F/E

140

1
150

Muscle cst(mm) g x 1011 t5 x 108 4 x 107 t3 x 10°  t3 x 103 #; x 102 uy x 10!
AN 53.57 4.7658 -1.8235 25.008 -14.713 3.9865 9.3288
BS 137.48 3.5832 -4.0884  -4.0282  -9.6852
BR 276.13 11.374 -17.600  -2.9114  -34.017
DA 172.84 -5.7631
DP 157.64 13.743
PC 155.19 -8.8663
BB 378.06 5.2156 -3.1498  -7.9101 -25.587 -5.0981
TB 260.05 6.1385 -2.3174 33.321 -22.491 5.2856 40.644 4.4331
Table 5: Coefficients for polynomial fits to moment arm lengths.
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(a) Muscle moment arms as a function of shoulder or elbow

angle.
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(b) Muscle lengths as a function of joint angle (deg).

Figure 6: Muscle moment arms and lengths.
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9 Force-length/velocity properties

The model used is the Brown, Cheng and Loeb model [15]. Other models can also be used such as cross-bridge
cycling models [22, 23] or hill type models [24, 12, 25, 26]. The Brown model accounts for active and passive elements
of the muscle tendon unit. [ is defined as the normalized length /lppr, v is in normalized units of Lopr/s. Activate
state (a) is computed using Eq. 14. F,; is the passive force resisting tension. F), o is the passive force resisting
compression of the muscle.

The basic form of these equations is

Fpp=F,1 +RxA;xFp,o
Focg =Rx*xAp *x Fr x Fy
Fiotat = Fpe + Fog (13)
Which simlifies to
Fiotat = Fp1 + R+ Ap(Fr x Fy + F,2)

F,1 =68.35%0.0495 * log(exp((l — 1.445)/(0.0495)) + 1)
Fp2 = —0.02exp(13.8 — 18.71)
—5.72—v
75‘72+5(1.238+2.09l) v<0
F, =
0.62—v(—3.124+4.21x1—2.671%)
0.62v v>0
1193 1.87 (14)
F= _‘7
LT ( 1.03 )
1
Ny =211 +4.16(7 -1
T —-Fp,1
B EFU + g ,2

a = 0.56 Np10t0gr0(1=A)/Ny

The passive force from the muscles, at the lengths we have should never really get about 5 N [27]. This passive
force is subtracted form the total joint torque to solve for the active compoments of force that the muscles need to
produce.

Once the active state is calculated, it is scaled by a normalized force (¢ = 31.8 N/m?)[8] to get muscle force.
This value may be low as the maximum isometric forces generated by the muscles are much lower than shown in
previous studies [28]. It has been shown that for simulation purposes this value may need to be as high as 100N /m?
for simulation [29]. For this model it is set to 200N/m?.

F=a-0-A, where A is area (15)

The passive force properties of the muscles seem to line up relatively well with Horowits [30]. He reports at long
sarcomere lengths the human muscles produce about 0.2-0.3 kg/cm?. The biceps bracchii at its longest length was
producing about 0.35 kg/cm?.
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Figure 7: All plots are done at an activation level of 1. A. Normalized Tension as a function of currenty length and
velocity. B. Force Velocity paramter. C. Force length parameter. C. Passive force element, the passive element is
flipped, as short length it uses a negative force and at long lengths 0 to simulate long lengths having higher force
than shorter lengths.
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10 Activation Dynamics

The active state is estimated from neural drive by passing u (neural drive) through a filter that describes calcium
dynamics [8]. It is approximated using a first order non-linear filter. This is similar to other methods [31, 32, 15].

(14+oue)u—a

t(u,a)
(16)
t(u a) _ tdeact + u(tact — tdeact) u>a
, tdeact otherwise

o and e represent noise in the neural drive signal. Currently I have 0 zero noise added to the signal. tsc7 = 50
msec, and tpgacr = 66 msec.

e I"u
/ u=1 '|II
0.8+ / u=0.6 H'a
/ u=0.3 \
.";l.l II",
b} L
506 —\ \
0N
o , \
= 4 \
£04r7 ' \_\
0.2t/
0 . . . . .
0 0.1 0.2 0.3 0.4 0.5

Time (s)

Figure 8: Activaiton dynamics as used from Li and Todorov. t scr = 50 msec, and tpgacr = 66 msec.

The umberger model uses different activation parameters which is shown in Eq. 18 [33]. Using our muscle
parameters of %FT we would get activation and deactivation times shown in table 6.

Muscle || %FT | tacr(ms) | tppacT(ms)
1 50.3 56.36 61.83
2 42.9 59.84 65.98
3 53.6 54.81 59.98
4 64.7 49.59 53.77
5 54.5 54.39 59.48
6 64.7 49.59 53.77

Table 6: Activation and deactivation times using the Umberger Model
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11 Forward Simulation

Figure 9 shows the results of a forward simulation using all the above parameters. The total torque supplied at
maximal activation, peak momement arms, and peak isometic position show that the model currently is not strong

enough to supply the torque required to make the movement.

Force

Actlve State ) 400

one
two
thr
fou
fiv

six

0
0 0.1 0.2 0.3 0.4 0.5
Time (s) Time (s)
15 Torque 20 Total Torque
T one —— Shoulder Flex
- two ~ |~ Elbow Flex
— thr - Shoulder Ext
— Elbow Ext

fou
fiv
six

0 0.1 0.2 0.3 0.4 0.5
Time (s)

-10
0 0.1 0.2 0.3 04 0.5

Time (s)

Figure 9: A. The active state of the muscles given a neural drive of one. We only see one line here as all the muscles
obay the same activation dynamics (10). This could be changed to use the umberger model where we would se
slight differences in activation dynamics (12.1.2). B. The force output of each muscle given the force-length and
force-velocity parameters (9) C. Torques supplied by the muscles using momemnt arm x force (8.1). Solid lines are
torques about the elbow, dashed lines about the shoulder. D Total torques about each joint.
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Figure 10: A. The active state of the muscles given a neural drive of one. The activation dynamics are from the
umberger model so we see slight differences in activaiont times (10). This could be changed to use the umberger
model where we would se slight differences in activation dynamics (12.1.2,12.1.2). B. The force output of each muscle
given the force-length and force-velocity parameters (9) C. Torques supplied by the muscles using momemnt arm x
force (8.1). Solid lines are torques about the elbow, dashed lines about the shoulder. D Total torques about each

joint.

12 Umberger Energy Model

This model is used for a multitude of models to estimate the energy expenditure of muscles[33]. It is not clear how
well this can predict the absolute energy expenditure, but I've been told it is good for comparing between groups.

19



12.1 Mechanical Muscle Model
12.1.1 Hill Constants

This model uses a modified Hill-Type model. It was modified to better accoutn for force production at submaximal
activatino and the effects of between-muscle fibre type differences. Consisted of a contractile element(CE) and a series
elastic element (SEE).

The normalized hill constanst Apgpr(= a/Fyax) and Brer(= b/Lcgopr) determine the shape of force-velocity
curve and maximal shortening velocity (and power that can be gerenared given maximal isometric force (Fasax).
Mutliple muscles are modeled simultaneously, the common approach is to assign all muscles same normalized Hill-
constants. Here, they scale Agrgr and Brgy by the percent of fast twitch fibers.

Agrgr = 0.1+ 0.4(%FT/100) (a7)
Brer = ArerVeparax)

In these constants, VCE = Veoe/Lcropr), and is expressed in LCE(OPT)S*I. A value of 12 LCE(OPT)S*I is used

for Vor(max)-

12.1.2 Activation Dynamics
Delays between STIM and ACT were modeled as a first-order process. We use a relation for Tacr and Tpgact:

TacT = 80ms — 0.47ms x BFT

(18)
TDEACT = 90ms — 0.56ms X %FT
Two rate constants are related to activation and deactivation by the time constants ¢; and co:
1 1
c1 = —cpand ¢p = ——— (19)
TACT TDEACT

The time constants are scaled as well by the percent of fast twitch motor units. We assume that the ratio of
Vermrax) for FT to ST fibers is 2.5:1. The activation dynamics is then modeled as a first order differential equation
Eq. 20.

a(t) = (u(t) — a(t)) (cru(t) + c2)

al0) = (ult) = a(0) () | - L)L) (20)

a(t) = (ult) - a(0) (2 - 2O 1)

TACT TDEACT

I was trying to simpilfy this to look like Eq. 16 but couldn’t figure it out quickly so I kept going.

12.1.3 Mechanical to thermal energy estimates
We need to compute muscle masses to convert between these two variables.
FMAX ZO'PCSA (21)

Where o is the specific tension of th muscle in Pa and PCSA is in m2. ¢ in the Umberger model is 0.25 MPa, or
25E4 Pa.
The muscle mass (kg) is calculated:

mass = PCSApLcgopr) (22)

p = 1059.7 kg/m?* and Legopr) is in m.
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12.2 Energy Expenditure Model

E =ha+ hy + hst + s

12.2.1 Activation and Maintanence Heat Rate

han = 1.28 x %FT + 25

About 40% of hays is attributed to activation, the other 60% is maintenance.

12.2.2 Shortening Muscle

Shortening heat coefficients for ST and FT fibers:

4 x 25
agsT)y =5
(1) Veerax—sT)
1 x 153
OS(FT) = =

Veemax—Fr)

(25)

For these coefficents, ‘N/CE(JVIAXfFT) is defined by the Hill coefficients Agg;, and Bgrgr. ‘N/CE(JVIAXfFT) is assumed

to be 2.5 times greater than VCE(MAX_ST)
Combining these equations we get the shortening heat rate:

iLSL = _QS(ST)VCE(l — %FT/100) — aS(FT)VCE(%FT/IOO) for Vep <0

The first term on the RHS cannot exceed 100 k—”;.

12.2.3 Lengthening Muscle

The rate of extra heat production in lengthening can be represented as a product of a coefficient a; and CE

velocity, with a slope slightly greater than shortening.

ar = 4assT)

Where ag(s7) is defined in equation 3. We then get the heat rate for a lengthening muscle.

hst = arLVer for Vo >0

12.2.4 Mechanical Work Rate

Mass specific mechanical work rate is given by:

FeeVeE
m

Wop = —

Where m is the mass of the muscle.
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12.2.5 Scaling Factors

Scaling factors needed to be added to account for the length and activation dependence of hay and hs L. hy
and hgy, are scaled by the noromalized, isometric force-length relation (Fjs,) when Log > Lo E(OPT)-
To get appropriate activation dependence a scaling factor (A) that depends on STIM and ACT is defined:

) STIM when STIM > ACT (30)
| (STIM + ACT)/2 when STIM < ACT
Then for scaling hay and hgy we define:
AAM _ A0.6
AS = AZ'O (31)
hgyp is scaled by As when Vo < 0 and by A when Veg > 0.
12.3 Total Energy Rate
The total energy liberation for a muscle in W/kg (total muscle mass) is:
if Ler < Legooprr)
E=havyAanS
[~assT)Ver(l — %FT/100) — aspr Vor(%FT/100)] - AsS  if Vop <0 (32)
+
OéL‘N/CEAS if VCE >0
— (FopVer)/m
if Lecg > Legoorr)
E= (0.4 x ilAM + 0.6 x iLAMFjsoAAMS>
[~assT)Vor(l — %FT/100) — aspr)Vor(%EFT/100)]| FisoAsS if Vor <0 (33)
_|_
OKLVCEFISOAS if VCE >0
— (FeeVer)/m

13 Metabolic Methods

For the first experiment, seated subjects made horizontal arm reaching movements using a robotic arm manip-
ulandum (Interactive Motion Technologies Shoulder-Elbow Robot 2) while secured to a chair by a 4-point seatbelt.
The position of the handle controlled a cursor on a computer screen that was placed just above head level and about
3 feet in front of the subject. Visual feedback was provided to the subjects throughout the experiment. To begin
a trial subjects would need to hold the cursor within the home location for 200 ms. The home circle would then
disappear and a target circle 10 cm away would appear. The target would appear randomly at 45, 135, 225, and
315 degrees randomly. Subjects were trained to move at designated speeds with a 100 ms time window. If subjects
moved too fast the target circle would turn grey, where if the subject moved to quickly the target would turn green.
Making the movement within the time window caused the target to ‘explode’ and turn yellow and play an auditory
tone. Once completing an outward reaching trial, the home and target circle locations would swap and the subject
would make another reaching movement towards the center of the screen. A subject would go through all four
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targets in a pseudorandom order then begin the process again. Subjects would make arm reaching movements for 5
minutes while collecting metabolic data approximately every 5 seconds (Parvomedics system). They went through
four different mass conditions and six different speeds. The completed mass conditions were 0, 5, 10, and 20 lbs
of added mass at the robot handle. The effective mass of a typical human arm CITE and robot arm in these four
mass conditions were about 2.5, 4.5, 6.5, and 10.4 kg. The different speed conditions ranged from 0.4 s — 1.3 s. The
numbers of trials per block were calculated for 5 minutes of reaching. The speeds were: Very, Very Slow (VVS, 1.3
s, 160 trials), Very Slow (VS, 1.1 s, 170 trials), Slow (S, 0.9 s, 200 trials), Medium (M, 0.7 s, 220 trials), Fast (F,
0.5 s, 240 trials), Very Fast (VF, 0.375s, 250 trials), and Very, Very Fast (VVF, 0.25s, 260 trials). DON”T THINK
TIMES ARE CORRECT CITE

Because the effect of arm reaching on metabolic cost is much smaller compared to walking or cycling subjects
were required to be well rested before testing. Testing sessions began with the subject sitting in the chair for 10
minutes. A baseline reading was then taken for 5 minutes and 3 times. Participants then began the arm reaching
trials. Subjects rested between each block for 5 minutes to adjust back to baseline. The metabolic energy was
calculated in joules per second,é, using the method described by Brockway (Brockway, 1987):

¢ =16.58Vo, + 4.51Ve0, (34)

Seated metabolic rate was subtracted from gross metabolic rate to determine the metabolic rate asscoiated with
the reaching movement only. After data was collected using custom MATLAB scripts were used to parse the data
by trial, mass, and speed. Movement related variables were calculated using these scripts such as velocity, movement
duration, reaction time, and metabolic cost of the movement were calculated.

14 Model Fitting

Five predictor variables were extracted from the model simulations for all the simulations (minimization paramter,
target, speed, mass condition). The five variables were joint torque, muscle force, active state, neural drive, and
the Umberger energy model. These variables were summed across the 4 targets then averaged to get our predictor
variable for a given condition and speed. The predictor was then fit to collected metabolic cost data in a simple
linear or ’free’ manner. The simple equations are shown in equation 35 where a, b, and c are fit depending on the
fitting method used.

Met = ax + b Linear Case

35
Met = ax® + b Free Case (35)

This was done for each predictor variable and each minimization function. Next R? values were computed using
the fits and AIC and BIC can be used here to determine the best model fits. More complicated models could be fit
but currently we want to keep it simple.

15 Results

Computed R? values can be seen in fig 11 and fig 12. The peak R? value for the linear case comes from minimizing
stress and using the Umberger model as the prediction with an R? value of 0.71. In the free case minimizaing stress
and using the Umberger model again has the highest R? value at 0.72. It looks like across all the model fits the
Umberger Model does the best at explaining metabolic cost of reaching and then joint torque.

The best linear fit for this model was using the Umberger energy expenditure model minimizing force. This gave
an R? value of 0.71 with a model fit equation as shown in equation 36 where x is the predictor variable (Umberger
Energy model). How this model comapares to the collected metabolic data is shown in figure 13.

¢=325 z—2511 (36)
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